

Technical Manual

CheckMate™ Mammalian Two-Hybrid System

www.promega.com

INSTRUCTIONS FOR USE OF PRODUCT E2440.

PRINTED IN USA. Revised 4/09

Part# TM049

CheckMate[™] Mammalian Two-Hybrid System

All technical literature is available on the Internet at: www.promega.com/tbs/ Please visit the web site to verify that you are using the most current version of this Technical Manual. Please contact Promega Technical Services if you have questions on use of this system. E-mail: techserv@promega.com

1. Description	1
2. Product Components and Storage Conditions	3
 3. General Considerations A. pACT Vector B. pBIND Vector C. Control Vectors D. Assessing Protein:Protein Interaction 	4
4. ProtocolsA. Subcloning into pACT and pBIND VectorsB. Purification of Vector and Transfection	
5. Troubleshooting	
6. Related Products	14
7. References	
8. AppendixA. pACT Vector Restriction SitesB. pBIND Vector Restriction Sites	
C. pG5luc Vector Restriction Sites	

1. Description

Two-hybrid systems are extremely powerful ways of detecting protein:protein interactions in vivo. The modular domains found in some transcription factors form the basis for two-hybrid systems. These domains include a DNA-binding domain, which binds to a specific DNA sequence, and a transcriptional activation domain, which interacts with the basal transcriptional machinery (1). A transcriptional activation domain in association with a DNA-binding domain may promote the assembly of RNA polymerase II complexes at the TATA box and increase transcription. In the CheckMateTM Mammalian Two-Hybrid System^(a-d), the DNA-binding domain and the transcriptional activation domain, produced by separate plasmids, become closely associated when one protein ("X") fused to a DNA-binding domain interacts with a second protein ("Y") fused to a transcriptional activation domain. In this system, interaction between proteins X and Y results in transcription of the firefly luciferase reporter gene (Figure 1).

Originally developed in yeast (2,3), the two-hybrid system has been adapted for use in mammalian cells (4,5). One major advantage of the CheckMate[™] Mammalian Two-Hybrid System over yeast systems is that mammalian protein interactions can be studied in an environment that is more similar to that in vivo. The CheckMate[™] System can be used with the Dual-Luciferase[®] Reporter Assay System (Cat.# E1910), which makes quantitation of luciferase reporter genes a rapid and easy process.

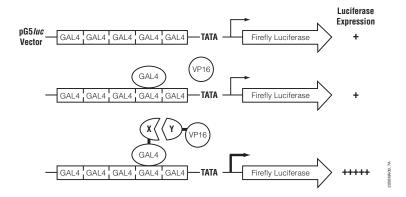


Figure 1. Schematic representation of the CheckMate[™] Mammalian Two-Hybrid System. The pG5luc Vector contains five GAL4 binding sites upstream of a minimal TATA box, which in turn is upstream of the firefly luciferase gene. In negative controls, the background level of luciferase is measured in the presence of GAL4 (from pBIND) and VP16 (from pACT). Interaction between the two test proteins, expressed as GAL4-X and VP16-Y fusion constructs, results in an increase in luciferase expression over the negative controls.

In the CheckMate[™] Mammalian Two-Hybrid System, the pBIND Vector contains the yeast GAL4 DNA-binding domain upstream of a multiple cloning region. The pACT Vector contains the herpes simplex virus VP16 activation domain upstream of a multiple cloning region. In addition, the pBIND Vector expresses the *Renilla reniformis* luciferase under the control of the SV40 promoter, which allows the user to normalize for differences in transfection efficiency. Two genes encoding two potentially interactive proteins of interest are cloned into the pBIND and pACT Vectors to generate fusion proteins with the DNA-binding domain of GAL4 and the activation domain of VP16, respectively. The pG5*luc* Vector contains five GAL4 binding sites upstream of a minimal TATA box, which in turn is upstream of the firefly luciferase gene (*luc+*). The pGAL4 and pVP16 fusion constructs are transfected along with the pG5*luc* Vector into mammalian cells. Two to three days after transfection, the cells are lysed, and the amount of *Renilla* luciferase and firefly luciferase are quantitated using the Dual-Luciferase[®] Reporter Assay System. Interaction

 Promega Corporation · 2800 Woods Hollow Road · Madison, WI 53711-5399 USA

 Toll Free in USA 800-356-9526 · Phone 608-274-4330 · Fax 608-277-2516 · www.promega.com

 Part# TM049

 Page 2
 Printed in USA.

between the two test proteins, expressed as GAL4 and VP16 fusion constructs, results in an increase in firefly luciferase expression as compared to the negative controls.

The CheckMate[™] Mammalian Two-Hybrid System provides two positive control vectors that encode and express two proteins known to interact in vivo. The pBIND-Id and pACT-MyoD Control Vectors encode GAL4:Id and VP16:MyoD fusion proteins, respectively.

Applications of the CheckMate[™] Mammalian Two-Hybrid System include confirming suspected interactions between two proteins, identifying residues/ domains involved in protein:protein interactions and identifying small molecules that affect protein:protein interactions. When identifying residues/domains involved in an interaction, the GeneEditor[™] in vitro Site-Directed Mutagenesis System (Cat.# Q9280) is a useful tool for making site-directed mutants.

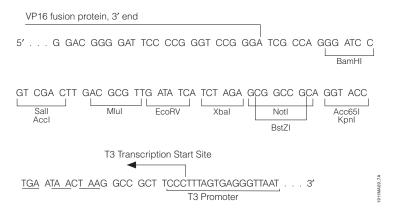
2. Product Components and Storage Conditions

Product	Cat.#
CheckMate™ Mammalian Two-Hybrid System	E2440
Each system includes:	

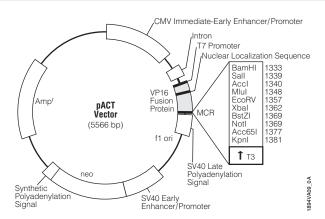
• 2	<u>2</u> 0 µg	pBIND	Vector
-----	---------------	-------	--------

•	20 µg	pACT Vector
---	-------	-------------

- 20 µg pBIND-Id Control Vector
- 20 µg pACT-MyoD Control Vector
- $2 \times 20 \,\mu g$ pG5*luc* Vector


Storage Conditions: Store the vectors at -20 °C.

3. General Considerations

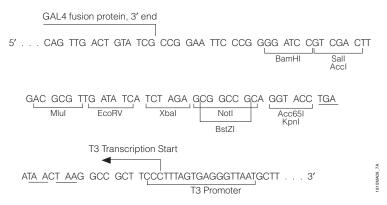

3.A. pACT Vector

The pACT Vector is a high-copy plasmid in which the human cytomegalovirus (CMV) immediate early promoter drives expression of the herpes virus VP16 activation domain (amino acids 411-456). A chimeric intron is located 5' of the gene segment, and a multiple cloning region is located 3' of the gene segment for insertion of cDNA clones of interest (Figures 2 and 3). The presence of this chimeric intron, in context with the CMV promoter and polyadenylation signal, can result in increased protein expression of cDNA genes linked to these elements (6). The stop codons and SV40 late polyadenylation region, demonstrated to be efficient for mRNA production (7), are at the 3' end of the fusion gene. The fusion gene region is flanked by T7 and T3 RNA polymerase promoters for the synthesis of sense and antisense RNA products. The T7 promoter allows the construct to be translated using the TNT® T7 Quick Coupled Transcription/Translation System (Cat.# L1170). Also located on this vector is the neomycin phosphotransferase gene (from Tn5) driven by the SV40 early promoter and followed by a synthetic polyadenylation cassette. This gene confers resistance to the neomycin analog, G418 (Geneticin[®]; 8). The plasmid backbone contains an f1 origin of replication for the production of single-stranded DNA (ssDNA) and the β-lactamase (Amp^r) gene for selection of the vector DNA in E. coli.

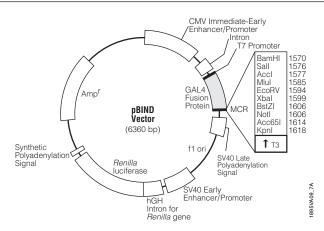
Figure 2. pACT Vector multiple cloning region. Bases listed in triplets correspond to codons in the open reading frame of the VP16 fusion protein. Stop codons (underlined) in three different reading frames are located downstream of the multiple cloning region and before the T3 promoter sequences.

Figure 3. pACT Vector circle map and sequence reference points.

pACT Vector sequence reference points:


1-659
669-750
890-1022
1053-1074
1067-1085
1116-1148
1188-1325
1333-1382
1402-1420
1429-1650
1693-2148
2181-2526
2424-2489
2571-3365
3429-3477
3874-4734

Use the T7 EEV Promoter Primer (Cat.# Q6700) for sequence analysis of the pACT Vector. Do not use the T7 Promoter Primer (Cat.# Q5021) to sequence the pACT Vector. There is a sequence difference between the primer and the promoter sequences.



3.B. pBIND Vector

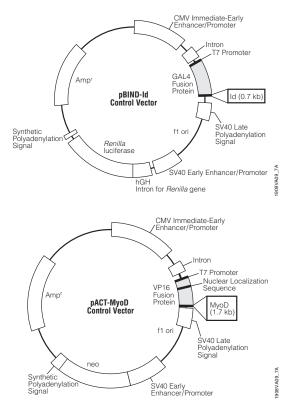
The pBIND Vector is a high-copy plasmid in which the CMV immediate early promoter drives expression of a portion of the yeast GAL4 gene (amino acids 1-147) containing a DNA-binding domain. As with the pACT Vector, the DNA-binding domain sequence is flanked by a chimeric intron, a multiple cloning region, stop codons and an SV40 late polyadenylation region (Figures 4 and 5). The fusion gene region is flanked by T7 and T3 RNA polymerase promoters for the purpose of synthesizing sense and antisense RNA products, respectively. The *Renilla* luciferase gene on this vector is preceded by the SV40 early promoter and a growth hormone intron. Introns can increase protein expression through mRNA stability and nuclear to cytoplasmic transport effects (9-12). A synthetic polyadenylation sequence resides 3' of the *Renilla* luciferase gene. The plasmid backbone contains an f1 origin of replication for the production of ssDNA and the β -lactamase gene (Amp^{*}) for selection in *E. coli*.

Figure 4. pBIND Vector multiple cloning region. Bases listed in triplets correspond to codons in the open reading frame of the GAL4 fusion protein. Stop codons (underlined) in three different reading frames are located downstream of the multiple cloning region and before the T3 promoter sequences.

Figure 5. pBIND Vector circle map and sequence reference points.

pBIND Vector sequence reference points:

CMV immediate-early enhancer	1-659
CMV immediate-early promoter	669-750
chimeric intron	890-1022
T7 EEV sequencing primer binding site	1053-1074
T7 RNA polymerase promoter (-17 to +2)	1067-1085
GAL4 fusion protein	1116-1556
multiple cloning region (MCR)	1570-1619
T3 RNA polymerase promoter (-16 to +3)	1639-1657
SV40 late polyadenylation signal	1666-1887
phage f1 origin of replication	1982-2437
SV40 early enhancer/promoter	2527-2872
SV40 minimum origin of replication	2770-2835
hGH intron for Renilla gene	2924-3183
Renilla luciferase gene coding region	3208-4143
synthetic polyadenylation signal	4201-4249
β-lactamase (Amp ^r) coding region	4668-5528


Use the T7 EEV Promoter Primer (Cat.# Q6700) for sequence analysis of the pBIND Vector. Do not use the T7 Promoter Primer (Cat.# Q5021) to sequence the pBIND Vector. There is a sequence difference between the primer and the promoter sequences.

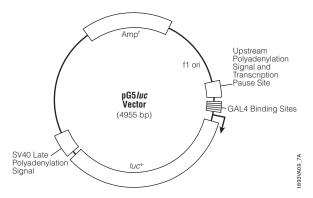
3.C. Control Vectors

The CheckMate[™] Mammalian Two-Hybrid System provides positive control vectors that encode and express two proteins known to interact in vivo (13). MyoD is expressed in skeletal muscle and is a myogenic regulatory protein (14,15). The Id protein acts as a negative regulator of myogenic differentiation (16). MyoD and Id are members of the helix-loop-helix family of nuclear proteins. The pBIND-Id Control Vector contains a segment of murine Id cDNA (amino acids 29-148; 13,16) cloned in-frame with the GAL4 DNA-binding domain of the pBIND Vector (Figure 6). The pACT-MyoD Control Vector contains a segment of murine MyoD cDNA (amino acids 1–318; 13,15) cloned in-frame with the VP16 activation domain of the pACT Vector (Figure 6).

Both positive control vectors are provided as high-quality DNA preparations qualified for transfection experiments.

Figure 6. pBIND-Id and pACT-MyoD Control Vector circle maps. The protein product of the Id cDNA sequence in the pBIND-Id Vector is known to interact with the protein product of the MyoD cDNA sequence in the pACT-MyoD Vector.

3.D. Assessing Protein:Protein Interaction


The cDNA sequences encoding the polypeptides of interest should be subcloned into pACT and pBIND Vectors to generate fusion proteins with the DNA-binding domain of GAL4 and the activation domain of VP16, respectively. The pGAL4 and pVP16 fusion constructs are transfected with the pG5*luc* Vector into mammalian cells. The pG5*luc* Vector contains five GAL4 binding sites upstream of a minimal TATA box, which in turn is upstream of the firefly luciferase gene (*luc+*; Figure 7). Association of the DNA-binding domain and the transcriptional activation domain results in transcriptional activation of the firefly luciferase reporter gene.

The insert in each vector must be in the correct orientation and reading frame. See Figure 2 for the sequence following the 3' end of the VP16 fragment, the multiple cloning region and the T3 promoter for pACT Vector; see Figure 4 for the sequence following the 3' end of the GAL4 fragment, the multiple cloning region and the T3 promoter for pBIND Vector. For a complete description of various techniques used in subcloning, please refer to the *Subcloning Notebook* (17). All vectors in the CheckMate[™] Mammalian Two-Hybrid System are ampicillin-resistant and are compatible with *E. coli* strains such as JM109. We strongly recommend sequencing the 5' junction between the insert and the vector to ensure that the insert is subcloned properly. The T3 Promoter Primer (Cat.# Q5741) or T7 EEV Promoter Primer (Cat.# Q6700) can be used for sequence verification.

Certain inserts appear to have vector "directionality" (or preference), in which the interaction between a pair of proteins is vector-dependent (13). Protein:protein interactions may appear stronger given a particular vector context for the inserts. Because of this phenomenon, we advise subcloning each cDNA of interest into both the pACT and the pBIND Vectors and testing the two possible fusion protein interactions.

3.D. Assessing Protein:Protein Interaction (continued)

Figure 7. pG5luc Vector circle map and sequence reference points.

pG5luc Vector sequence reference points:

five GAL4 binding sites	18-120
major late promoter of adenovirus	132-172
predicted transcriptional start site	168
luciferase (luc+) gene	225-1877
SV40 late polyadenylation signal	1909-2130
β-lactamase (Amp ^r) coding region	4077-3217
phage f1 origin of replication	4209-4664
upstream polyadenylation signal and	
transcriptional pause site	4795-4948

4. Protocols

4.A. Subcloning into pACT and pBIND Vectors

Introductory comments on subcloning, isolating and purifying fragments of DNA may be found in the *Subcloning Notebook* (17) or in any basic molecular biology text (e.g., *Current Protocols in Molecular Biology*, reference 18; *Molecular Cloning*: A Laboratory Manual, reference 19).

4.B. Purification of Vector and Transfection

Following the successful subcloning of the cDNAs into the pACT and pBIND Vectors, the resulting plasmids should be purified such that the DNA is free of protein, RNA and chemical contamination. Before completing any experiments with the CheckMate[™] System, optimize the transfection method for the cell type being transfected. Many DNA delivery agents exist for transfecting mammalian cells. Transfection of DNA into mammalian cells may be mediated

by cationic lipids, calcium phosphate, DEAE-dextran or electroporation. Transfection systems based on cationic lipids (TransFast[™] Transfection Reagent, Transfectam[®] Reagent, Tfx[™]-20 and Tfx[™]-50 Reagents, and calcium phosphate (ProFection[®] Mammalian Transfection System) are available from Promega. **Note:** See Related Products, Section 6, for a complete listing of the transfection reagents available from Promega.

The most efficient transfection method is highly dependent upon the cell type. When optimizing a transfection method for a particular cell type, use a reporter gene such as the firefly luciferase gene whose activity is easily and rapidly assayed. The pGL3-Control Vector (Cat.# E1741) expresses the firefly luciferase gene from the SV40 early promoter. For additional information about transfection reagents and cell lines, visit: www.promega.com/transfectionasst/

Table 1 presents the recommended combinations of vectors to properly control an experiment when using the CheckMate[™] System to determine the extent to which two proteins interact in a two-hybrid assay. Figure 8 presents representative data from typical control transfection experiments.

Transfection	pACT Vector	pBIND Vector	pG5 <i>luc</i> Vector
1	pACT Vector	pBIND Vector	pG5luc Vector
2	pACT-MyoD	pBIND-Id	
	Control Vector	Control Vector	pG5luc Vector
3	-	-	-
4	pACT Vector	pBIND-X Vector	pG5luc Vector
5	pACT-Y Vector	pBIND Vector	pG5luc Vector
6	pACT-Y Vector	pBIND-X Vector	pG5luc Vector

Table 1. Recommended Experimental Design to Determine the Magnitude of
Interaction Between Two Proteins.

Notes:

- 1. The background level of firefly luciferase expression from the pG5*luc* Vector is determined in the presence of the pACT and pBIND Vectors (Transfection #1).
- 2. The positive control reaction (Transfection #2) is expected to provide firefly luciferase levels well above the background levels measured in Transfection #1. Adequate vector amounts are provided for approximately 20 positive control transfection reactions for cells cultured in 60 mm dishes.
- 3. The nontransfected control (Transfection #3) is used to determine background activity for the firefly luciferase assay, which can be subtracted from each transfection reaction.
- 4. *Renilla* luciferase activity expressed from the pBIND Control Vector or pBIND-X Vector can be used to normalize for differences in transfection efficiencies.

4.B. Purification of Vector and Transfection (continued)

- 5. It is critical that the amount of pG5*luc* Vector is identical in all transfection reactions for accurate comparisons between samples. Dispensing a larger volume of the pG5*luc* Vector to the transfection mixtures generally correlates with higher reproducibility between transfection reactions within an experiment. For example, adding a 25 µl volume containing 1 µg of pG5*luc* DNA to each transfection mixture will provide less variability between mixtures compared to adding a 1 µl volume of pG5*luc* DNA to each transfection mixture. The pG5*luc* Vector can be diluted in buffer or media, depending upon the transfection method used.
- 6. Transfection #4 tests for interaction of the GAL4-X fusion protein with the VP16 activation domain and transcriptional activation activity of the X protein. Transfection #5 tests for interaction of the VP16-Y fusion protein with the GAL4 binding domain and GAL4 DNA binding activity of the Y protein.

The amount of vector DNA to use will depend upon the method of transfection. However, we recommend a 1:1 molar ratio of the pACT:pBIND Vector constructs. We have varied the amount of the pG5*luc* Vector in experiments with the positive control vectors and have found that the signal-to-noise ratio of firefly luciferase expression does not differ significantly. We routinely use a molar ratio of 1:1:1 for pACT:pBIND:pG5*luc* Vector in the CheckMate[™] Mammalian Two-Hybrid System. To maintain a constant mass of DNA for each transfection reaction within an experiment, add plasmid DNA such as pGEM[®]-3Zf(+) Vector (Cat.# P2271).

We have successfully transfected NIH/3T3, CHO, 293, BHK-2 and HeLa mammalian cell lines with the positive control vectors. We recommend testing a specific cell line with positive and negative control transfection reactions before initiating protein:protein interaction experiments with that cell line. Replication of the pACT and pBIND Vectors and their recombinant vectors is expected in COS cells or other cells that express the SV40 large T antigen. Use the Dual-Luciferase® Reporter Assay System to quantitate *Renilla* luciferase and firefly luciferase activities.

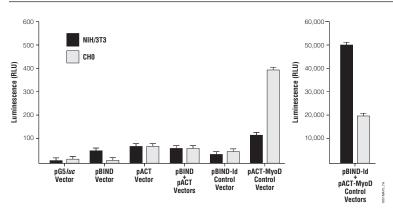


Figure 8. Sample data for representative control transfection experiments using the CheckMate[™] Mammalian Two-Hybrid System in two mammalian cell lines. Data were recorded as relative light units (RLU) using a Turner luminometer following calcium phosphate transfection.

5. Troubleshooting

For questions not addressed here, please contact your local Promega Branch Office or Distributor. Contact information available at: www.promega.com. E-mail: techserv@promega.com

Symptoms	Causes and Comments
Low <i>Renill</i> a luciferase activity in all samples	Low transfection efficiency. Re-optimize transfection conditions for your cell line with a reporter vector such as pGL3-Control Vector (Cat.# E1741).
	Check that cell cultures are not contaminated with <i>Mycoplasma</i> .
High variability in firefly luciferase activity between replicates	Unequal distribution of pG5 <i>luc</i> DNA in transfection mixtures. Prepare a "master mix" of diluted pG5 <i>luc</i> Vector in buffer or medium for more reproducible aliquots.
High luciferase activity from controls but low luciferase activity after co-transfection with recombinant vectors of interest (i.e., false-negative result)	Recombinant plasmid DNA impure. Purify plasmid DNA using methods that provide transfection-quality DNA. Co-transfect with a reporter DNA to determine if there are contaminants that interfere with transfection in the DNA preparation. One of the recombinant fusion proteins is labile. Assay for luciferase activity in cell extracts at earlier time points.

5. Troubleshooting (continued)

Symptoms	Causes and Comments
High luciferase activity from controls but low luciferase activity after co-transfection with recombinant vectors of	Expression of a test protein is vector-dependent. Subclone the "X" and "Y" test proteins into the other's respective pACT Vector or pBIND Vector.
interest (i.e., false-negative result; continued)	 Weak interaction between proteins cloned into the pACT and pBIND Vectors: Additional macromolecules may be required for interaction if the X and Y proteins are part of a multicomponent complex. Endogenous cellular proteins may compete for interactions with the X or Y proteins. The X and Y proteins may have relatively low affinities.

6. Related Products

Product	Size	Cat.#
Dual-Luciferase [®] Reporter Assay System	100 assays	E1910
Dual-Luciferase [®] Reporter 1000 Assay System	1,000 assays	E1980
Dual-Glo™ Luciferase Assay System	10 ml	E2920
	100 ml	E2940
	10 × 100 ml	E2980
T7 EEV Promoter Primer	2 µg	Q6700
TransFast™ Transfection Reagent	1.2 mg	E2431
Transfectam [®] Reagent for the Transfection of		
Eukaryotic Cells	1 mg	E1231
	0.5 mg	E1232
Tfx [™] -20 Reagent	4.8 mg (3 × 1.6 mg)	E2391
Tfx™-50 Reagent	2.1 mg (3 × 0.7 mg)	E1811

7. References

- Sadowski, I. et al. (1988) GAL4-VP16 is an unusually potent transcriptional activator. Nature 335, 563–4.
- Fields, S. and Song, O. (1989) A novel genetic system to detect protein-protein interactions. *Nature* 340, 245–6.
- Chien, C. et al. (1991) The two-hybrid system: A method to identify and clone genes for proteins that interact with a protein of interest. Proc. Natl. Acad. Sci. USA 88, 9578–82.
- Dang, C.V. et al. (1991) Intracellular leucine zipper interactions suggest c-Myc heterooligomerization. Mol. Cell. Biol. 11, 954–62.
- Fearon, E.R. *et al.* (1992) Karyoplasmic interaction selection strategy: A general strategy to detect protein-protein interactions in mammalian cells. *Proc. Natl. Acad. Sci. USA* 89, 7958–62.
- Brondyk, W. (1995) The pCI-neo Mammalian Expression Vector. Promega Notes 51, 10–4.
- Carswell, S. and Alwine, J.C. (1989) Efficiency of utilization of the simian virus 40 late polyadenylation site: Effects of upstream sequences. *Mol. Cell. Biol.* 9, 4248–58.
- Southern, P.J. and Berg, P. (1982) Transformation of mammalian cells to antibiotic resistance with a bacterial gene under control of the SV40 early region promoter. *J. Mol. Appl. Genet.* 1, 327–41.
- Gross, M.K., Kainz, M.S. and Merrill, G.F. (1987) Introns are inconsequential to efficient formation of cellular thymidine kinase mRNA in mouse L cells. *Mol. Cell. Biol.* 7, 4576–81.
- Buchman, A.R. and Berg, P. (1988) Comparison of intron-dependent and intronindependent gene expression. *Mol. Cell. Biol.* 8, 4395–405.
- Evans, M.J. and Scarpulla, R.C. (1989) Introns in the 3'-untranslated region can inhibit chimeric CAT and beta-galactosidase gene expression. *Gene* 84, 135–42.
- Huang, M.T.F. and Gorman, C.M. (1990) Intervening sequences increase efficiency of RNA 3´ processing and accumulation of cytoplasmic RNA. *Nucleic Acids Res.* 18, 937–47.
- Finkel, T. et al. (1993) Detection and modulation in vivo of helix-loop-helix proteinprotein interactions. J. Biol. Chem. 268, 5–8.
- Weintraub, H. et al. (1991) The myoD gene family: Nodal point during specification of the muscle cell lineage. Science 251, 761–6.
- Davis, R.L., Weintraub, H. and Lassar, A.B. (1987) Expression of a single transfected cDNA converts fibroblasts to myoblasts. *Cell* 51, 987–1000.
- Benezra, R. et al. (1990) The protein Id: A negative regulator of helix-loop-helix DNA binding proteins. Cell 61, 49–59.
- Subcloning Notebook (2004) Promega Corporation. (www.promega.com/guides/subcloning_guide/)
- 18. Ausubel, F.M. et al., eds. (1993) In: Current Protocols in Molecular Biology, Greene Publishing Associates and John Wiley and Sons, New York, NY.
- Sambrook, J., Fritsch, E.F. and Maniatis, T. (2001) Molecular Cloning: A Laboratory Manual, 3rd edition, Cold Spring Laboratory, Cold Spring Harbor, NY.

8. Appendix

8.A. pACT Vector Restriction Sites

The following restriction enzyme tables were constructed using DNASTAR[®] sequence analysis software. Please note that we have not verified this information by restriction digestion with each enzyme listed. The location given specifies the 3' end of the cut DNA (the base to the left of the cut site). For more information on the cut sites of these enzymes, or if you identify a discrepancy, please contact your local Promega Branch or Distributor. In the U.S., contact Promega Technical Services at 800-356-9526. Vector sequences are available in the GenBank[®] database (GenBank[®]/EMBL Accession Number **AF264723**) and on the Internet at: **www.promega.com/vectors/**

Enzyme	# of Sites	Location	Enzyme	# of Sites	Location
AatII	5	278, 331, 414,	BspMI	5	877, 1365, 2586,
		600, 3742			2967, 3417
AccI	1	1340	BsrGI	1	96
AccIII	1	1670	BssHII	1	3096
Acc65I	1	1377	BssSI	4	3291, 3685, 3992,
AflII	4	828, 847, 1050,			5376
		2553	Bst98I	4	828, 847, 1050,
AflIII	2	1291, 1348			2553
Alw44I	3	3492, 3989, 5235	BstXI	1	3420
AlwNI	1	5140	BstZI	2	1369, 2605
AvaI	2	1178, 1313	Cfr10I	4	1818, 3018, 3199,
AvaII	4	1317, 3215, 4297,			4576
		4519	ClaI	1	1665
AvrII	1	2504	CspI	1	3215
BalI	3	10, 64, 2781	Csp45I	1	3381
BamHI	1	1333	DraI	4	1620, 4083, 4775,
BanII	4	729, 1228, 1852,			4794
		3064	Drall	1	3681
BbeI	1	2702	DraIII	1	1926
BbsI	2	961, 1120	DsaI	3	513, 2412, 3131
BbuI	5	1147, 1263, 2253,	EagI	2	1369, 2605
		2325, 3104	EarI	4	1152, 3043, 3253,
BglII	1	5561			3862
BsaI	2	915, 4595	EclHKI	1	4661
BsaAI	3	493, 1923, 3003	Eco52I	2	1369, 2605
BsaBI	2	1282, 1661	EcoICRI	2	727, 1226
BsaMI	2	1480, 1573	EcoRI	1	1173
BsmI	2	1480, 1573	EcoRV	1	1357
BspHI	3	3716, 3821, 4829	EheI	1	2700

Table 2. Restriction Enzymes That Cut the pACT Vector Between 1 and 5 Times.

Enzyme	# of Sites	Location	Enzyme	# of Sites	Location
FspI	2	2801, 4438	RsrII	1	3215
HaeII	4	1768, 1776, 2702,	SacI	2	729, 1228
		5309	SalI	1	1339
HincII	3	677, 1341, 1559	ScaI	2	1063, 4180
HindII	3	677, 1341, 1559	SfiI	1	2458
HindIII	2	756, 2521	SgfI	1	664
HpaI	1	1559	SinI	4	1317, 3215, 4297,
I-PpoI	1	851			4519
KasI	1	2698	SmaI	2	1180, 1315
KpnI	1	1381	SnaBI	1	493
MluI	1	1348	SpeI	1	152
NaeI	2	1820, 3201	SphI	5	1147, 1263, 2253,
NarI	1	2699	-		2325, 3104
NcoI	3	513, 2412, 3131	SspI	4	5, 52, 2131, 3856
NdeI	1	387	StuI	1	2504
NgoMIV	2	1818, 3199	StyI	4	513, 2412, 2505,
NheI	1	1085			3131
NotI	1	1369	TfiI	5	1308, 1667, 2527,
NsiI	2	2255, 2327			3184, 3318
Ppu10I	2	2251, 2323	Tth111I	1	2817
PshAI	1	1206	VspI	2	160, 4486
PspAI	2	1178, 1313	XbaI	1	1362
PstI	2	838, 2752	XmaI	2	1178, 1313
PvuI	2	664, 4292	XmnI	1	4061
PvuII	2	2181, 2805			

Table 2. Restriction Enzymes That Cut the pACT Vector Between 1 and 5 Times (continued).

Table 3. Restriction Enzymes That Do Not Cut the pACT Vector.

AccB7I	Bpu1102I	Eco81I	PinAI	SrfI
AgeI	Bsp120I	EcoNI	PmeI	Sse8387I
ApaI	Bst1107I	FseI	PmlI	SwaI
AscI	BstEII	NruI	PpuMI	XcmI
BbrPI	Bsu36I	PacI	Psp5II	XhoI
BclI	Eco47III	PaeR7I	SacII	
BlpI	Eco72I	PflMI	SgrAI	

8.A. pACT Vector Restriction Sites (continued)

AciI	BsrI	FokI	MboI	RsaI
AcyI	BsrSI	HaeIII	MboII	Sau3AI
AluI	Bst71I	HgaI	MnlI	Sau96I
Alw26I	BstOI	HhaI	MseI	ScrFI
AspHI	BstUI	HinfI	MspI	SfaNI
BanI	CfoI	HpaII	MspA1I	TaqI
BbvI	DdeI	HphI	NciI	Tru9I
BglI	DpnI	Hsp92I	NdeII	XhoII
BsaOI	DpnII	Hsp92II	NlaIII	
BsaHI	DrdI	MaeI	NlaIV	
BsaJI	EaeI	MaeII	NspI	
Bsp1286I	Fnu4HI	MaeIII	PleI	

Table 4. Restriction Enzymes That Cut the pACT Vector 6 or More Times.

8.B. pBIND Vector Restriction Sites

The following restriction enzyme tables were constructed using DNASTAR[®] sequence analysis software. Please note that we have not verified this information by restriction digestion with each enzyme listed. The location given specifies the 3' end of the cut DNA (the base to the left of the cut site). For more information on the cut sites of these enzymes, or if you identify a discrepancy, please contact your local Promega Branch or Distributor. In the U.S., contact Promega Technical Services at 800-356-9526. Vector sequences are available in the GenBank[®] database (GenBank[®]/EMBL Accession Number **AF264722**) and on the Internet at: www.promega.com/vectors/

Enzyme	# of Sites	Location	Enzyme	# of Sites	Location
AccI	1	1577	Bst98I	4	828, 847, 1050,
Acc65I	1	1614			2899
AccB7I	1	3055	BstZI	1	1606
AflII	4	828, 847, 1050,	Bsu36I	2	2961, 3007
		2899	Cfr10I	2	2107, 5370
AflIII	2	1585, 3390	ClaI	2	1902, 4252
Alw44I	3	4286, 4783, 6029	Csp45I	1	3214
AlwNI	2	3116, 5934	DraI	4	1857, 4877, 5569,
AvaI	2	1333, 1565			5588
AvaII	5	3079, 3256, 3978,	Drall	1	4475
		5091, 5313	DraIII	2	2215, 2955
AvrII	1	2851	DrdI	5	817, 2259, 2888,
Ball	3	10, 64, 3059			4372, 6241
BamHI	1	1570	DsaI	2	513, 2758
BanII	2	729, 2141	EagI	1	1606
BbsI	4	961, 1120, 1345,	EarI	4	1510, 1920, 3378,
		4048			4656
BbuI	3	1147, 2599, 2671	EclHKI	1	5455
BclI	2	3492, 3701	Eco52I	1	1606
BglII	1	6355	Eco81I	2	2961, 3007
BsaI	3	915, 1258, 5389	EcoICRI	1	727
BsaAI	3	493, 2212, 3940	EcoNI	1	3120
BsaBI	2	1898, 4264	EcoRI	2	1560, 2909
BsaMI	2	1717, 1810	EcoRV	1	1594
BsmI	2	1717, 1810	FspI	2	1961, 5232
BspHI	4	3776, 4510, 4615,	HaeII	4	2057, 2065, 2931,
-		5623			6103
BspMI	2	877, 1602	HindIII	2	756, 2867
BsrGI	3	96, 1406, 3906	HpaI	2	1393, 1796
BssSI	4	3866, 4479, 4786,	I-PpoI	1	851
		6170	KpnI	1	1618

Table 5. Restriction Enzymes That Cut the pBIND Vector Between 1 and 5 Times.

8.B. pBIND Vector Restriction Sites (continued)

Table 5. Restriction Enzymes That Cut the pBIND Vector Between 1 and 5 Times (continued).

Enzyme	# of Sites	Location	Enzyme	# of Sites	Location
MluI	1	1585	SfiI	1	2804
NaeI	1	2109	SgfI	1	664
NcoI	2	513, 2758	SinI	5	3079, 3256, 3978,
NdeI	1	387			5091, 5313
NgoMIV	1	2107	SmaI	1	1567
NheI	1	1085	SnaBI	1	493
NotI	1	1606	SpeI	1	152
NsiI	2	2601, 2673	SphI	3	1147, 2599, 2671
PaeR7I	1	1333	SspI	4	5, 52, 2420, 4650
PflMI	1	3055	StuI	1	2850
Ppu10I	2	2597, 2669	StyI	3	513, 2758, 2851
PspAI	1	1565	VspI	3	160, 3308, 5280
PstI	1	838	XbaI	1	1599
PvuI	3	664, 1942, 5086	XcmI	1	3857
PvuII	1	2527	XhoI	1	1333
SacI	1	729	XmaI	1	1565
SalI	1	1576	XmnI	2	3742, 4855
ScaI	2	1063, 4974			

Table 6. Restriction Enzymes That Do Not Cut the pBIND Vector.

AccIII	Bsp120I	EheI	PmlI	SrfI
AgeI	BssHII	FseI	PpuMI	Sse8387I
ApaI	Bst1107I	KasI	PshAI	SwaI
AscI	BstEII	NarI	Psp5II	Tth111I
BbeI	BstXI	NruI	RsrII	
BbrPI	CspI	PacI	SacII	
BlpI	Eco47III	PinAI	SgrAI	
Bpu1102I	Eco72I	PmeI	SplI	

AatII	Bsp1286I	FokI	MaeII	NspI
AciI	BsrI	HaeIII	MaeIII	PleI
AcyI	BsrSI	HgaI	MboI	RsaI
AluI	Bst71I	HhaI	MboII	Sau3AI
Alw26I	BstOI	HincII	MnlI	Sau96I
AspHI	BstUI	HindII	MseI	ScrFI
BanI	CfoI	HinfI	MspI	SfaNI
BbvI	DdeI	HpaII	MspA1I	TaqI
BglI	DpnI	HphI	NciI	TfiI
BsaOI	DpnII	Hsp92I	NdeII	Tru9I
BsaHI	EaeI	Hsp92II	NlaIII	XhoII
BsaJI	Fnu4HI	MaeI	NlaIV	

8.C. pG5luc Vector Restriction Sites

The following restriction enzyme tables were constructed using DNASTAR[®] sequence analysis software. Please note that we have not verified this information by restriction digestion with each enzyme listed. The location given specifies the 3' end of the cut DNA (the base to the left of the cut site). For more information on the cut sites of these enzymes, or if you identify a discrepancy, please contact your local Promega Branch or Distributor. In the U.S., contact Promega Technical Services at 800-356-9526. Vector sequences are available in the GenBank[®] database (GenBank[®]/EMBL Accession Number **AF264724**) and on the Internet at: www.promega.com/vectors/

Enzyme	# of Sites	Location	Enzyme	# of Sites	Location
AccI	1	2140	BsrGI	1	715
AccIII	3	102, 920, 1436	BssSI	2	2570, 3954
Acc65I	1	1	BstZI	3	1892, 1896, 4788
AcyI	4	232, 258, 1651,	ClaI	3	2134, 4846, 4950
		3827	Csp45I	1	394
AflIII	2	718, 2397	DraI	4	2100, 3156, 3175,
Alw26I	5	1248, 1480, 1546,			3867
		3351, 4127	Drall	1	1404
Alw44I	2	2711, 3957	DraIII	1	4442
AlwNI	1	2813	DrdI	3	1626, 2505, 4486
AspHI	4	1690, 2715, 3876,	DsaI	2	223, 595
-		3961	EaeI	4	1892, 1896, 3678,
AvaI	2	55, 1281			4788
AvaII	3	1404, 3428, 3650	EagI	3	1892, 1896, 4788
BamHI	1	2141	EclHKI	1	3290
BanII	2	1249, 4368	Eco47III	1	2273
BbeI	1	261	Eco52I	3	1892, 1896, 4788
BbsI	5	127, 235, 1513,	EcoNI	3	782, 1182, 1842
		1629, 2226	EcoRI	1	98
BbuI	1	888	EheI	1	259
BclI	1	805	FseI	1	1898
BglI	2	3410, 4678	FspI	2	3512, 4685
BglII	1	173	HincII	3	1529, 2039, 2149
BsaI	1	3351	HindII	3	1529, 2039, 2149
BsaAI	1	4439	HindIII	1	190
BsaBI	1	2140	HpaI	1	2039
BsaHI	4	232, 258, 1651,	Hsp92I	4	232, 258, 1651,
		3827			3827
BsaMI	3	197, 1960, 2053	KasI	1	257
BsmI	3	197, 1960, 2053	KpnI	1	5
BspHI	3	808, 3117, 4125	NaeI	3	1896, 2267, 4336
BspMI	3	1614, 1623, 4918	NarI	1	258

Table 8. Restriction Enzymes That Cut the pG5*luc* Vector Between 1 and 5 Times.

 Promega Corporation
 2800
 Woods
 Hollow
 Road
 Madison,
 WI
 53711-5399
 USA

 Toll Free in USA 800-356-9526
 Phone 608-274-4330
 Fax
 608-277-2516
 www.promega.com

 Part# TM049
 Printed in USA.
 Revised 4/09

Enzyme	# of Sites	Location	Enzyme	# of Sites	Location
NcoI	1	223	SgrAI	1	1653
NgoMIV	3	1894, 2265, 4334	SinI	3	1404, 3428, 3650
NheI	1	126	SphI	1	888
NotI	1	4788	SspI	3	4094, 4647, 4762
NspI	2	888, 2401	StyI	1	223
PaeR7I	1	55	VspI	1	3462
PpuMI	1	1404	XbaI	3	12, 170, 1879
PshAI	1	2212	XcmI	1	960
Psp5II	1	1404	XhoI	1	55
PvuI	3	79, 3660, 4706	XmnI	1	3889
SalI	1	2147			

Table 8. Restriction Enzymes That Cut the pG5*luc* Vector Between 1 and 5 Times (continued).

Table 9. Restriction Enzymes That Do Not Cut the pG5luc Vector.

AatII	Bsp120I	EcoRV	Ppu10I	SpeI
AccB7I	BssHII	I-PpoI	PspAI	SplI
AflII	Bst1107I	MluI	PstI	SrfI
AgeI	Bst98I	NdeI	PvuII	Sse8387I
ApaI	BstEII	NruI	RsrII	StuI
AscI	BstXI	NsiI	SacI	SwaI
AvrII	Bsu36I	PacI	SacII	Tth111I
Ball	CspI	PflMI	SfiI	XmaI
BbrPI	Eco72I	PinAI	SgfI	
BlpI	Eco81I	PmeI	SmaI	
Bpu1102I	EcoICRI	PmlI	SnaBI	

Table 10. Restriction Enzymes That Cut the pG5luc Vector 6 or More Times.

AciI	BstUI	Hgal	MnlI	Sau96I
AluI	CfoI	HhaI	MseI	ScaI
BanI	Cfr10I	HinfI	MspI	ScrFI
BbvI	DdeI	HpaII	MspA1I	SfaNI
BsaOI	DpnI	HphI	NciI	TaqI
BsaJI	DpnII	Hsp92II	NdeII	Tfil
Bsp1286I	EarI	MaeI	NlaIII	Tru9I
BsrI	Fnu4HI	MaeII	NlaIV	XhoII
BsrSI	FokI	MaeIII	PleI	
Bst71I	HaeII	MboI	RsaI	
BstOI	HaeIII	MboII	Sau3AI	

(a) READ THIS FIRST BEFORE OPENING PRODUCT

For research use only. The terms of the limited license conveyed with the purchase of this product are as follows: Researchers may use this product in their own research and they may transfer derivatives to others for such research use provided that at the time of transfer a copy of this label license is given to the recipients and the recipients agree to be bound by the conditions of this label license. Researchers shall have no right to modify or otherwise create variations of the nucleotide sequence of the luciferase gene except that Researchers may: (1) clone heterologous DNA sequences at either or both ends of said luciferase gene so as to create fused gene sequences provided that the coding sequence of the resulting luciferase gene has no more than four deoxynucleotides missing at the affected terminus when compared to the intact luciferase gene sequence, and (2) insert and remove nucleic acid sequences in furtherance of splicing research predicated on the inactivation or reconstitution of the luminescent activity of the encoded luciferase. In addition, Researchers must do one of the following: (1) use luminescent assay reagents purchased from Promega Corporation for all determinations of luminescence activity resulting from the research use of this product and its derivatives; or (2) contact Promega to obtain a license for the use of the product and its derivatives. No other use or transfer of this product or its derivatives is authorized without the express written consent of Promega including, without limitation, Commercial Use. Commercial Use means any and all uses of this product and derivatives by a party for monetary or other consideration and may include but is not limited to use in: (1) product manufacture; and (2) to provide a service, information or data; and/or resale of the product or its derivatives, whether or not such product or derivatives are resold for use in research. With respect to such Commercial Use, or any diagnostic, therapeutic or prophylactic uses, please contact Promega for supply and licensing information. If the purchaser is not willing to accept the conditions of this limited use statement, Promega is willing to accept the return of the unopened product and provide the purchaser with a full refund. However, in the event the product is opened, then the purchaser agrees to be bound by the conditions of this limited use statement. The above license relates to Promega patents and/or patent applications on improvements to the luciferase gene.^(a)The method of recombinant expression of Coleoptera luciferase is covered by U.S. Pat. Nos. 5,583,024, 5,674,713 and 5,700,673. A license (from Promega for research reagent products and from The Regents of the University of California for all other fields) is needed for any commercial sale of nucleic acid contained within or derived from this product.

^(b)The CMV promoter and its use are covered under U.S. Pat. Nos. 5,168,062 and 5,385,839 owned by the University of Iowa Research Foundation, Iowa City, Iowa, and licensed FOR RESEARCH USE ONLY. Research Use includes contract research for which monetary or other consideration may be received. Other commercial users must obtain a license to these patents directly from the University of Iowa Research Foundation.

(*)Licensed from University of Georgia Research Foundation, Inc., under U.S. Pat. Nos. 5,292,658, 5,418,155, Canadian Pat. No. 2,105,984 and related patents.

(d)U.S. Pat. No. 5,670,356.

© 1997-2007, 2009 Promega Corporation. All Rights Reserved.

Dual-Luciferase, pGEM, ProFection, TNT and Transfectam are registered trademarks of Promega Corporation. CheckMate, Dual-Glo, GeneEditor, Tfx and TransFast are trademarks of Promega Corporation.

DNASTAR is a registered trademark of DNASTAR, Inc. GenBank is a registered trademark of US Dept of Health and Human Services. Geneticin is a registered trademark of Life Technologies, Inc.

Products may be covered by pending or issued patents or may have certain limitations. Please visit our Web site for more information.

All prices and specifications are subject to change without prior notice.

Product claims are subject to change. Please contact Promega Technical Services or access the Promega online catalog for the most up-to-date information on Promega products.

 Promega Corporation · 2800 Woods Hollow Road · Madison, WI 53711-5399 USA

 Toll Free in USA 800-356-9526 · Phone 608-274-4330 · Fax 608-277-2516 · www.promega.com

 Part# TM049

 Page 24